metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1.10-Diazonia-18-crown-6 hexachloridoplatinate(IV) dihydrate

Mohammad Yousefi,^a* Shabahang Teimouri,^a Vahid Amani^b and Hamid Reza Khavasi^c

^aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, ^bResearch Institute in Education, 16 Hojiat Dost Street, Vessal Shirazi Avenue, Tehran, Iran, and ^cDepartment of Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran Correspondence e-mail: myousefi50@yahoo.com

Received 28 August 2007; accepted 29 August 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.013 Å; R factor = 0.030; wR factor = 0.085; data-to-parameter ratio = 24.0.

The asymmetric unit of the title compound, $(C_{12}H_{28}N_2O_4)$ -[PtCl₆]·2H₂O, contains one half-cation, one half-anion and one water molecule, both ions lying on inversion centres. The Pt ion has an octahedral coordination. In the crystal structure, intermolecular $O-H\cdots Cl$, $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds result in the formation of a supramolecular structure.

Related literature

For related literature, see: Bencini et al. (1992); Chekhlov (2000, 2001, 2005); Chekhlov & Martynov (1998); Chekhlov et al. (1994); Fonari et al. (2004); Hasan et al. (2001); Hu et al. (2003); Juan et al. (1998); Li & Liu (2003); Moers et al. (2000); Simonov et al. (2003); Terzis & Mentzafos (1983); Yousefi et al. (2007); Zordan & Brammer (2004).

Experimental

Crystal data

(C12H28N2O4)[PtCl6]-2H2O $M_r = 708.18$ Monoclinic, $P2_1/c$ a = 9.3668 (12) Åb = 12.5688 (11) Å c = 10.9546 (15) Å $\beta = 112.384 (9)^{\circ}$

Data collection

Stoe IPDS II diffractometer Absorption correction: numerical (X-RED; Stoe & Cie, 2005) $T_{\min} = 0.250, T_{\max} = 0.510$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	H atoms treated by a mixture of
$wR(F^2) = 0.085$	independent and constrained
S = 1.22	refinement
3168 reflections	$\Delta \rho_{\rm max} = 1.27 \text{ e} \text{ Å}^{-3}$
132 parameters	$\Delta \rho_{\rm min} = -0.66 \ {\rm e} \ {\rm \AA}^{-3}$

V = 1192.5 (3) Å³

Mo $K\alpha$ radiation

 $0.25 \times 0.18 \times 0.10 \text{ mm}$

8277 measured reflections

3168 independent reflections

2493 reflections with $I > 2\sigma(I)$

 $\mu = 6.59 \text{ mm}^{-1}$

T = 298 (2) K

 $R_{\rm int} = 0.036$

Z = 2

Table 1 Selected geometric parameters (Å, °).

Pt1-Cl2 Pt1-Cl3	2.3257 (12) 2.3259 (12)	Pt1-Cl1	2.3262 (12)
$Cl2^{i} - Pt1 - Cl2$ $Cl2^{i} - Pt1 - Cl3$ Cl2 - Pt1 - Cl3 $Cl3 - Pt1 - Cl3^{i}$ $Cl3 - Pt1 - Cl3^{i}$	180 89.30 (4) 90.70 (4) 180 90.02 (5)	$\begin{array}{c} Cl2^{i}-Pt1-Cl1\\ Cl2-Pt1-Cl1\\ Cl3-Pt1-Cl1\\ Cl1^{i}-Pt1-Cl1\\ Cl1^{i}-Pt1-Cl1\\ \end{array}$	89.66 (5) 90.34 (5) 89.98 (5) 180

Symmetry code: (i) -x + 1, -y + 2, -z + 1.

l able 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1C \cdots O2$	0.90	2.55	2.803 (9)	97
$N1 - H1C \cdots O3$	0.90	2.21	2.936 (7)	138
$N1 - H1D \cdots O1$	0.90	2.57	2.852 (8)	99
$O3-H3C\cdots Cl2$	0.79 (6)	2.39 (6)	3.169 (4)	173 (7)
$O3 - H3D \cdots O2$	0.69 (13)	2.48 (10)	3.103 (7)	152 (10)
$N1 - H1D \cdots O3^{ii}$	0.90	1.93	2.817 (6)	169
$O3-H3D\cdots O1^{ii}$	0.69 (13)	2.53 (12)	2.961 (7)	123 (12)

Symmetry code: (ii) -x, -y+2, -z.

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, the Research Institute in Education and Shahid Beheshti University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2322).

References

- Bencini, A., Bianchi, A., Dapporto, P., Espana, E. G., Micheloni, M., Ramirez, J. A., Paoletti, P. & Paolil, P. (1992). *Inorg. Chem.* **31**, 1902–1908.
- Chekhlov, A. N. (2000). J. Struct. Chem. 41, 1046–1052.
- Chekhlov, A. N. (2001). Dokl. Akad. Nauk. SSSR, 42, 854-859.
- Chekhlov, A. N. (2005). Russ. J. Gen. Chem. 75, 1618-1621.
- Chekhlov, A. N., Yurtanov, A. I. & Martynov, I. V. (1994). Dokl. Akad. Nauk. SSSR, **339**, 635–640.
- Chekhlov, A. N. & Martynov, I. V. (1998). Dokl. Akad. Nauk. SSSR, 363, 362–366.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Fonari, M. S., Simonov, Y. A., Chumakov, Y. M., Bocelli, G., Ganin, E. V. & Yavolovskii, A. A. (2004). Supramol. Chem. 16, 23–30.

- Hasan, M., Kozhevnikov, I. V., Siddiqui, M. R. H., Femoni, C., Steiner, A. & Winterton, N. (2001). *Inorg. Chem.* **40**, 795–800.
- Hu, N. H., Norifusa, T. & Aoki, K. (2003). Dalton Trans. pp. 335-341.
- Juan, C., Mareque, R. & Lee, B. (1998). Inorg. Chem. 37, 4756-4757.
- Li, D. & Liu, D. (2003). Anal. Sci. 19, 1089-1090.
- Moers, O., Henschel, D., Lange, I., Blaschette, A. & Jones, P. G. (2000). Z. Anorg. Allg. Chem. 626, 2388–2398.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Simonov, Y. A., Fonari, M. S., Lipkowski, J., Yavolovskii, A. A. & Ganin, E. V. (2003). J. Inclusion Phenom. Macrocycl. Chem. 46, 27–35.
- Stoe & Cie (2005). X-AREA (Version 1.31) and X-RED (Version 1.31). Stoe & Cie, Darmstadt, Germany.
- Terzis, A. & Mentzafos, D. (1983). Inorg. Chem. 22, 1140-1143.
- Yousefi, M., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, 03782.
- Zordan, F. & Brammer, L. (2004). Acta Cryst. B60, 512-519.

Acta Cryst. (2007). E63, m2460-m2461 [doi:10.1107/S1600536807042341]

1,10-Diazonia-18-crown-6 hexachloridoplatinate(IV) dihydrate

M. Yousefi, S. Teimouri, V. Amani and H. R. Khavasi

Comment

Recently, we reported the synthesis and crystal structure of $[(H_2DA18C6)Cl_2]$, (II), (Yousefi *et al.*, 2007) [where H_2DA18C6 is 1,10 –Diazonia-18-crown-6]. Several proton transfer systems using 1,10-diaza-18 -crown-6, with proton donor molecules,such as $[(H_2DA18C6)I_2:2H_2O]$, (III), (Chekhlov, 2005), $[(H_2DA18C6)(C_2HO_4)_2]$, (IV), and $[(H_2DA18C6)_2(C_2O_4)_2:2H_2O]$, (V), (Chekhlov, 2000), $[(H_2DA18C6)(picrate)_2]$, (VI), (Chekhlov, 2001), $[(H_2DA18C6)(HPTD)_2]$, (VII), (Simonov *et al.*, 2003), $[(H_2DA18C6)(PD)_2:(H_2O)_4]$, (VIII), and $[(H_2DA18C6)(PS)_2:(H_2O)_2]$, (IX), (Fonari *et al.*, 2004), $[(H_2DA18C6)(CCI_3COO)_2(CCI_3COOH)_2]$, (X), (Chekhlov *et al.*, 1994), $[(H_2DA18C6)(CCl_3COO)_2]$, (XI), (Chekhlov & Martynov, 1998), and $\{[H_2DA18C6][(ArSO_2)_2N]_2\}$, (XII), (Moers *et al.*, 2000) [where H_2DA18C6 is 1,10-Diazonia-18-crown-6, C_2O_4 is oxalate, HPTD is (4Z,5E)-pyrimidine-2,4,5,6(1*H*,3H)-tetraone 4,5-dioxime anion, PD is 2-(2-methylphenyl)-2*H*-[1,2,3]triazolo[4,5-*d*] pyrimidine-5,7(4*H*,6H)-dione 3-oxide anion, PS is 6-amino-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl- sulfamate and (ArSO_2)_2N is bis(4-chlorobenzenesulfonyl)imide] have been synthesized and characterized by single-crystal X-ray diffraction methods.

There are also several proton transfer systems using $H_2[PtCl_6]$ with proton acceptor molecules, such as $[Hpy-Br-3]_2[PtCl_6]\cdot 2H_2O$, (XIII), and $[HpyI-3]_2[PtCl_6]\cdot 2H_2O$, (XIV), (Zordan & Brammer, 2004), $[BMIM]_2[PtCl_6]$, (XV), and $[EMIM]_2[PtCl_6]$, (XVI), (Hasan *et al.*, 2001), {(DABCO)H_2[PtCl_6]}, (XVI), (Juan *et al.*, 1998), {*p*-C₆H₄ (CH₂ImMe)₂[PtCl₆]}, (XVIII), (Li & Liu, 2003), [het][PtCl_6]\cdot 2H_2O, (XIX), (Hu *et al.*, 2003), [9-MeGuaH]_2[PtCl_6]\cdot 2H_2O, (XX), (Terzis & Mentzafos, 1983) and $[H_{10}[30]aneN_{10}][PtCl_6]_2Cl_6\cdot 2H_2O, (XXI),$ (Bencini *et al.*, 1992) [Where BMI*M*⁺ is 1-*n*-butyl-3-methylimidazolium, EMI*M*⁺ is 1-ethyl-3-methyl-imidazolium, DABCO is 1,4-diazabicyclooctane, het is 2-(?-hydroxyethyl) thiamine and 9-MeGuaH is 9-methylguaninium] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

The asymmetric unit of (I), (Fig. 1), contains one half-cation, one half-anion and one water molecule. The Pt ion has an octahedral coordination. The bond lengths and angles, in cation, are in good agreement with the corresponding values in (II) and (III). Also, the Pt—Cl bond lengths and angles (Table 1) are within normal ranges, as in $[H_{10}[30]ane][PtCl_6]_2Cl_6\cdot 2H_2O$, (XXII), (Bencini *et al.*, 1992).

In the crystal structure, the intermolecular O—H···Cl, N—H···O and O—H···O hydrogen bonds (Table 2) seem to be effective in the stabilization of the crystal structure, resulting in the formation of a supramolecular structure (Fig. 2).

Experimental

For the preparation of the title compound, (I), a solution of 1,10-diaza-18 -crown-6 (0.10 g, 0.37 mmol) in water (50 ml) was added to a solution of $H_2PtCl_6\cdot 2H_2O$ (0.20 g, 0.37 mmol) in water (30 ml) and the resulting yellow solution was stirred

for 30 min at 333 K. Then, it was left to evaporate slowly at room temperature. After 24 h, yellow prismatic crystals of (I) were isolated (yield; 0.22 g, 84%, m.p. 470-472 K).

Refinement

H3C and H3D (for OH₂) were located in difference syntheses and refined isotropically [O-H = 0.69 (10) and 0.79 (7) Å and $U_{iso}(H) = 0.062 (19)$ and 0.08 (3) Å²]. The remaining H atoms were positioned geometrically, with N—H = 0.90 Å and C—H = 0.97 Å for methylene H, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [symmetry codes: (a) 1 - x, 2 - xy, 1-z; (b) -x, 2-y, -z].

Fig. 2. A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.

1,10-Diazonia-18-crown-6 hexachloridoplatinate(IV) dihydrate

Crystal data	
$(C_{12}H_{28}N_2O_4)[PtCl_6]\cdot 2H_2O$	$F_{000} = 692$
$M_r = 708.18$	$D_{\rm x} = 1.972 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2000 reflections
<i>a</i> = 9.3668 (12) Å	$\theta = 2.4 - 29.3^{\circ}$
<i>b</i> = 12.5688 (11) Å	$\mu = 6.59 \text{ mm}^{-1}$
c = 10.9546 (15) Å	T = 298 (2) K
$\beta = 112.384 \ (9)^{\circ}$	Prism, yellow
V = 1192.5 (3) Å ³	$0.25\times0.18\times0.10~mm$
<i>Z</i> = 2	
Data collection	

Stoe IPDS II diffractometer

3168 independent reflections

Radiation source: fine-focus sealed tube	2493 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.036$
Detector resolution: 0.15 mm pixels mm ⁻¹	$\theta_{max} = 29.3^{\circ}$
T = 298(2) K	$\theta_{\min} = 2.4^{\circ}$
rotation method scans	$h = -12 \rightarrow 12$
Absorption correction: numerical (X-RED; Stoe & Cie, 2005)	$k = -17 \rightarrow 13$
$T_{\min} = 0.250, \ T_{\max} = 0.510$	$l = -10 \rightarrow 15$
8277 measured reflections	

Re	finement	ţ
1.0	11101110111	٢

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.030$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.085$	$w = 1/[\sigma^2(F_o^2) + (0.0394P)^2 + 0.839P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.22	$(\Delta/\sigma)_{\rm max} = 0.011$
3168 reflections	$\Delta \rho_{max} = 1.27 \text{ e } \text{\AA}^{-3}$
132 parameters	$\Delta \rho_{min} = -0.66 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.3080 (7)	0.8830 (6)	-0.0359 (7)	0.074 (2)
H1A	0.3526	0.9281	0.0412	0.089*
H1B	0.3907	0.8576	-0.0611	0.089*
C2	0.2280 (7)	0.7913 (5)	-0.0044 (7)	0.0660 (17)
H2A	0.1829	0.7470	-0.0822	0.079*
H2B	0.3025	0.7486	0.0643	0.079*
C3	0.0327 (10)	0.7382 (5)	0.0851 (8)	0.086 (2)
H3A	0.1064	0.7091	0.1667	0.103*

H3B	0.0038	0.6822	0.0192	0.103*
C4	-0.1087 (10)	0.7764 (6)	0.1067 (9)	0.088 (2)
H4A	-0.1832	0.8060	0.0257	0.105*
H4B	-0.1569	0.7178	0.1342	0.105*
C5	-0.1737 (10)	0.8963 (8)	0.2511 (10)	0.097 (3)
H5B	-0.2307	0.8373	0.2676	0.116*
H5A	-0.1197	0.9316	0.3348	0.116*
C6	-0.2797 (11)	0.9680 (9)	0.1662 (12)	0.108 (3)
H6A	-0.3505	0.9919	0.2061	0.130*
H6B	-0.3393	0.9326	0.0838	0.130*
N1	0.1050 (5)	0.8269 (3)	0.0404 (5)	0.0515 (10)
H1C	0.1456	0.8735	0.1072	0.062*
H1D	0.0317	0.8612	-0.0264	0.062*
01	0.2010 (5)	0.9412 (4)	-0.1400 (5)	0.0696 (12)
O2	-0.0603 (5)	0.8538 (4)	0.2044 (5)	0.0697 (11)
O3	0.1170 (5)	1.0429 (4)	0.1461 (4)	0.0531 (9)
H3C	0.199 (8)	1.060 (6)	0.197 (7)	0.062 (19)*
H3D	0.076 (12)	1.015 (6)	0.176 (11)	0.08 (3)*
Pt1	0.5000	1.0000	0.5000	0.03249 (8)
Cl1	0.54112 (16)	1.13900 (10)	0.64977 (13)	0.0528 (3)
C12	0.45210 (13)	1.12134 (10)	0.32866 (12)	0.0489 (3)
C13	0.23954 (13)	0.99812 (10)	0.46689 (13)	0.0476 (2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.051 (3)	0.095 (5)	0.075 (4)	0.013 (3)	0.023 (3)	-0.023 (4)
C2	0.067 (4)	0.061 (3)	0.060 (4)	0.030 (3)	0.013 (3)	0.000 (3)
C3	0.165 (8)	0.035 (3)	0.073 (4)	-0.007 (4)	0.064 (5)	-0.004 (3)
C4	0.113 (6)	0.075 (5)	0.080 (5)	-0.045 (4)	0.043 (5)	-0.011 (4)
C5	0.103 (6)	0.115 (7)	0.103 (6)	-0.013 (5)	0.074 (6)	0.014 (6)
C6	0.072 (5)	0.143 (8)	0.131 (9)	0.000 (5)	0.063 (6)	0.036 (7)
N1	0.065 (3)	0.038 (2)	0.050(2)	0.0104 (18)	0.019 (2)	-0.0004 (18)
01	0.061 (2)	0.071 (3)	0.092 (3)	0.012 (2)	0.044 (2)	0.007 (3)
O2	0.082 (3)	0.053 (2)	0.090 (3)	-0.005 (2)	0.051 (3)	0.000(2)
O3	0.044 (2)	0.063 (2)	0.046 (2)	-0.0040 (18)	0.0101 (17)	-0.002 (2)
Pt1	0.03113 (11)	0.03264 (11)	0.03280 (11)	-0.00666 (8)	0.01116 (8)	-0.00084 (10)
Cl1	0.0654 (7)	0.0460 (6)	0.0518 (7)	-0.0157 (5)	0.0276 (6)	-0.0151 (5)
Cl2	0.0440 (6)	0.0511 (7)	0.0459 (6)	-0.0080 (5)	0.0106 (5)	0.0102 (5)
C13	0.0354 (5)	0.0533 (6)	0.0552 (6)	-0.0044 (4)	0.0183 (4)	0.0045 (6)

Geometric parameters (Å, °)

Pt1—Cl2 ⁱ	2.3257 (12)	C2—H2A	0.9700
Pt1—Cl2	2.3257 (12)	C2—H2B	0.9700
Pt1—Cl3	2.3259 (12)	C3—N1	1.482 (8)
Pt1—Cl3 ⁱ	2.3259 (12)	C3—C4	1.509 (12)
Pt1—Cl1 ⁱ	2.3262 (12)	С3—НЗА	0.9700

Pt1—Cl1	2.3262 (12)	C3—H3B	0.9700
O1—C6 ⁱⁱ	1.444 (11)	C4—O2	1.389 (9)
O3—H3C	0.79 (7)	C4—H4A	0.9700
O3—H3D	0.69 (10)	C4—H4B	0.9700
N1—H1C	0.9000	C5—C6	1.400 (13)
N1—H1D	0.9000	C5—O2	1.446 (9)
C1—O1	1.404 (8)	С5—Н5В	0.9700
C1—C2	1.485 (10)	С5—Н5А	0.9700
C1—H1A	0.9700	C6—O1 ⁱⁱ	1.444 (11)
C1—H1B	0.9700	С6—Н6А	0.9700
C2—N1	1.483 (8)	С6—Н6В	0.9700
Cl2 ⁱ —Pt1—Cl2	180	N1—C2—C1	111.5 (5)
Cl2 ⁱ —Pt1—Cl3	89.30 (4)	N1—C2—H2A	109.3
Cl2—Pt1—Cl3	90.70 (4)	C1—C2—H2A	109.3
Cl2 ⁱ —Pt1—Cl3 ⁱ	90.70 (4)	N1—C2—H2B	109.3
Cl2—Pt1—Cl3 ⁱ	89.30 (4)	C1—C2—H2B	109.3
Cl3—Pt1—Cl3 ⁱ	180	H2A—C2—H2B	108.0
Cl2 ⁱ —Pt1—Cl1 ⁱ	90.34 (5)	N1—C3—C4	110.6 (5)
Cl2—Pt1—Cl1 ⁱ	89.66 (5)	N1—C3—H3A	109.5
Cl3—Pt1—Cl1 ⁱ	90.02 (5)	C4—C3—H3A	109.5
Cl3 ⁱ —Pt1—Cl1 ⁱ	89.98 (5)	N1—C3—H3B	109.5
Cl2 ⁱ —Pt1—Cl1	89.66 (5)	С4—С3—Н3В	109.5
Cl2—Pt1—Cl1	90.34 (5)	НЗА—СЗ—НЗВ	108.1
Cl3—Pt1—Cl1	89.98 (5)	O2—C4—C3	107.2 (6)
Cl3 ⁱ —Pt1—Cl1	90.02 (5)	O2—C4—H4A	110.3
Cl1 ⁱ —Pt1—Cl1	180	C3—C4—H4A	110.3
C1—O1—C6 ⁱⁱ	108.3 (6)	O2—C4—H4B	110.3
C4—O2—C5	117.6 (6)	C3—C4—H4B	110.3
H3C—O3—H3D	112 (10)	H4A—C4—H4B	108.5
C3—N1—C2	113.1 (5)	C6—C5—O2	115.7 (7)
C3—N1—H1C	109.0	C6—C5—H5B	108.4
C2—N1—H1C	109.0	O2—C5—H5B	108.4
C3—N1—H1D	109.0	С6—С5—Н5А	108.4
C2—N1—H1D	109.0	02—C5—H5A	108.4
H1C—N1—H1D	107.8	H5B—C5—H5A	107.4
O1—C1—C2	109.1 (5)	C5—C6—O1 ¹¹	110.8 (7)
O1—C1—H1A	109.9	С5—С6—Н6А	109.5
C2—C1—H1A	109.9	O1 ⁱⁱ —C6—H6A	109.5
O1—C1—H1B	109.9	С5—С6—Н6В	109.5
C2—C1—H1B	109.9	O1 ⁱⁱ —C6—H6B	109.5
H1A—C1—H1B	108.3	H6A—C6—H6B	108.1
O1-C1-C2-N1	-62.0 (7)	C1—C2—N1—C3	-174.4 (6)
N1—C3—C4—O2	-61.1 (8)	C2-C1-O1-C6 ⁱⁱ	178.1 (7)
O2—C5—C6—O1 ⁱⁱ	-59.2 (13)	C3—C4—O2—C5	-174.7 (6)

C4—C3—N1—C2 Symmetry codes: (i) $-x+1$, $-y+2$, $-z+1$;	-170.2 (6) (ii) - <i>x</i> , - <i>y</i> +2, - <i>z</i> .	C6—C5—O2—C4	-	-75.3 (10)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1C…O2	0.90	2.55	2.803 (9)	97
N1—H1C…O3	0.90	2.21	2.936 (7)	138
N1—H1D…O1	0.90	2.57	2.852 (8)	99
O3—H3C…Cl2	0.79 (6)	2.39 (6)	3.169 (4)	173 (7)
O3—H3D…O2	0.69 (13)	2.48 (10)	3.103 (7)	152 (10)
N1—H1D···O3 ⁱⁱ	0.90	1.93	2.817 (6)	169
O3—H3D…O1 ⁱⁱ	0.69 (13)	2.53 (12)	2.961 (7)	123 (12)
Symmetry codes: (ii) $-x$, $-y+2$, $-z$.				

Fig. 1

